
DEPARTMENT OF BOTANY

GOVERNMENT DEGREE COLLEGE, PALAKONDA

ANDHRA PRADESH STATE COUNCIL OF HIGHER EDUCATION

(A Statutory body of the Government of Andhra Pradesh)

3rd,4th and 5th floors, Neeladri Towers, Sri Ram Nagar, 6th Battalion Road, Atmakur (V), Mangalagiri (M), Guntur-522 503, Andhra Pradesh

Web: www.apsche.org **Email**: secretaryapsche@gmail.com

REVISED SYLLABUS OF BOTANY UNDER CBCS FRAMEWORK WITHEFFECT FROM 2020-2021

PROGRAMME: THREE-YEAR BOTANY

(With Learning Outcomes, Unit-wise Syllabus, References, Co-curricular Activities & Model Q.P.)

For Fifteen Courses of 1, 2, 3 & 4 Semesters)

(To be Implemented from 2020-21 Academic Year)

APSCHE/ REVISION OF C.B.C.S – BOTANY COURSE W.E.F.2020-21

S. No.	Semester	Title of the Course (Paper)	Hours /week	Max. Marks (SEE)	Marks in CIA	Credit s
1.	SemI/	Fundamentals of Microbes and Non-vascular	04	75	25	03
	Course-1 Practical	Plants Fundamentals of Microbes and Non-vascular Plants	03	Max. Marks-50 Internal assessment at Semester end		02
2.	SemII/ Course-2	Basics of Vascular plants and Phytogeography	04	75	25	03
	Course-2 Practical	Basics of Vascular plants and Phytogeography	03	Max. Marks-50 External assessment at Semester end		02
3.	SemIII/ Course-3	Anatomy and Embryology of Angiosperms, Plant Ecology and Biodiversity	04	75	25	03
	Course-3 Practical	Anatomy and Embryology of Angiosperms, Plant Ecology and Biodiversity	03	Max. Marks-50 Internal assessment at Semester end		02
4.	SemIV Course-4	Plant Physiology and Metabolism	03	75	25	03
	Course- 4Practical	Plant Physiology and Metabolism	03	Max. Marks-50 External assessment at Semester end		02
5.	Sem IV Course- 5	Cell Biology, Genetics and Plant Breeding	04	75	25	03
	Course- 5Practical	Cell Biology, Genetics and Plant Breeding	03	Max. Marks-50 External assessment at Semester end		02
6.		Domain related Skill Enhancement Courses (02)	03	75	25	03
	Sem V	- Three (3) pairs of courses (each pair has 2 related courses) will be offered, student has to choose a pair of courses.	03	Internal	Max. Marks-50 Internal assessment at Semester end	
	Course – 6 & 7	student has to choose a pair of courses.	03	75	25	03
			03	Max. Marks-50 Internal assessment at Semester end		02

III Semester /Botany Core Course - 3

Anatomy and Embryology of Angiosperms, Plant Ecology and Biodiversity

(Total hours of teaching – 60 @ 04 Hrs./Week)

Theory:

Learning outcomes:

On successful completion of this course, the students will be able to;

- ➤ Understand on the organization of tissues and tissue systems in plants.
- > Illustrate and interpret various aspects of embryology.
- ➤ Discuss the basic concepts of plant ecology, and evaluate the effects of environmental and biotic factors on plant communities.
- Appraise various qualitative and quantitative parameters to study the population and community ecology.
- ➤ Correlate theimportance of biodiversity and consequences due to its loss.
- ➤ Enlistthe endemic/endangered flora and fauna from two biodiversity hot spots in India and assess strategies for their conservation.

Unit – 1: Anatomy of Angiosperms

12 Hrs.

- 1. Organization of apical meristems: Tunica-carpus theory and Histogen theory.
- 2. Tissue systems–Epidermal, ground and vascular.
- 3. Anomalous secondary growth in *Boerhaavia* and *Dracaena*.
- 4. Study of timbers of economic importance Teak, Red sanders and Rosewood.

Unit – 2: Embryology of Angiosperms

12 Hrs.

- 1. Structure of anther, anther wall, types of tapetum. Microsporogenesis and development of male gametophyte.
- 2. Structure of ovule, megasporogenesis; monosporic (*Polygonum*), bisporic (*Allium*) and tetrasporic (*Peperomia*) types of embryo sacs.
- 3. Outlines of pollination, pollen pistil interaction and fertilization.
- 4. Endosperm Types and biological importance Free nuclear, cellular, helobial and ruminate.
- 5. Development of Dicot (Capsella bursa-pastoris) embryo.

Unit – 3: Basics of Ecology

12 Hrs.

- 1. Ecology: definition, branches and significance of ecology.
- 2. Ecosystem: Concept and components, energy flow, food chain, food web, ecologicalpyramids.
- 4. Plants and environment: Climatic (light and temperature), edaphic and biotic factors.
- 5. Ecological succession:Hydrosere and Xerosere.

Unit – 4:Population, Community and Production Ecology 12 Hrs.

- 1. Population ecology: Natality, mortality, growth curves, ecotypes, ecads
- 2. Community ecology: Frequency, density, cover, life forms, biological spectrum
- 3. Concepts of productivity: GPP, NPP and Community Respiration
- 4. Secondary production, P/R ratio and Ecosystems.

Unit – 5:Basics of Biodiversity

12 Hrs.

- 1. Biodiversity: Basic concepts, Convention on Biodiversity Earth Summit.
- 2. Value of Biodiversity; types and levels of biodiversity and Threats to biodiversity
- 3. Biodiversity Hot spots in India.Biodiversity in North Eastern Himalayas and Western Ghats.
 - 4. Principles of conservation: IUCN threat-categories, RED data book
 - 5. Role of NBPGR and NBA in the conservation of Biodiversity.

Text books:

- ➤ Botany III (Vrukshasastram-I) : Telugu Akademi, Hyderabad
- ➤ Botany IV (Vrukshasastram-II) : Telugu Akademi, Hyderabad
- ➤ Pandey, B.P. (2013) *College Botany, Volume-II*, S. Chand Publishing, New Delhi
- ➤ Pandey, B.P. (2013) *College Botany, Volume-III*, S. Chand Publishing, New Delhi
- ➤ Bhattacharya, K., G. Hait&Ghosh, A. K., (2011) A Text Book of Botany, Volume-II, New Central Book Agency Pvt. Ltd., Kolkata

Books for Reference:

- Esau, K. (1971) *Anatomy of Seed Plants*. John Wiley and Son, USA.
- Fahn, A. (1990) *Plant Anatomy*, Pergamon Press, Oxford.
- Cutler, D.F., T. Botha & D. Wm. Stevenson (2008) Plant Anatomy: An Applied Approach, Wiley, USA.
- ➤ Paula Rudall (1987) *Anatomy of Flowering Plants: An Introduction to Structure and Development.* Cambridge University Press, London
- ➤ Bhojwani, S. S. and S. P. Bhatnagar (2000)*The Embryology of Angiosperms* (4th *Ed.*), Vikas Publishing House, Delhi.
- ➤ Pandey, A. K. (2000) *Introduction to Embryology of Angiosperms*. CBS Publishers & Distributors Pvt. Ltd., New Delhi
- ➤ Maheswari, P. (1971)An Introduction to Embryology of Angiosperms. McGraw Hill Book Co., London.
- ➤ Johri, B.M. (2011) Embryology of Angiosperms. Springer-Verlag, Berlin
- ▶ Pandey, B.P. (2013) College Botany, Volume-III, S. Chand Publishing, New Delhi
- ➤ Bhattacharya, K., A. K. Ghosh, & G. Hait (2011) A Text Book of Botany, Volume-IV, New Central Book Agency Pvt. Ltd., Kolkata
- ➤ Kormondy, Edward J. (1996) *Concepts of Ecology*, Prentice-Hall of India Private Limited, New Delhi
- ➤ Begon, M., J.L. Harper & C.R. Townsend (2003) *Ecology*, Blackwell Science Ltd., U.S.A.
- Eugene P. Odum (1996) Fundamentals of Ecology, Natraj Publishers, Dehradun
- Sharma, P.D. (2012) Ecology and Environment. Rastogi Publications, Meerut, India.
- ➤ N.S.Subrahmanyam& A.V.S.S. Sambamurty (2008)*Ecology*Narosa Publishing House,

New Delhi

- A. K. Agrawal & P.P. Deo (2010) *Plant Ecology*, Agrobios (India), Jodhpur
- ➤ Kumar, H.D. (1992) *Modern Concepts of Ecology (7th Edn.,)*Vikas Publishing Co.,

New Delhi.

- Newman, E.I. (2000): *Applied Ecology*Blackwell Scientific Publisher, U.K.
- ➤ Chapman, J.L&M.J. Reiss (1992): *Ecology Principles & Applications*. Cambridge

University Press, U.K.

- ➤ Kumar H.D. (2000) *Biodiversity & Sustainable Conservation* Oxford & IBH Publishing Co Ltd. New Delhi.
- ➤ U. Kumar (2007) *Biodiversity : Principles & Conservation*, Agrobios (India), Jodhpur

Practical syllabus of BotanyCore Course – 3 /Semester – III Anatomy and Embryology of Angiosperms, Plant Ecology and Biodiversity

(Total hours of laboratory exercises 30 Hrs. @ 02 Hrs./Week)

Course Outcomes:

On successful completion of this practical course students shall be able to:

- 1. Get familiarized with techniques of section making, staining and microscopic study of vegetative, anatomical and reproductive structure of plants.
- 2. Observe externally and under microscope, identify and draw exact diagrams of the material in the lab.
- Demonstrate application of methods in plant ecology and conservation of biodiversity and qualitative and quantitative aspects related to populations and communities of plants.

Practical Syllabus

- 1. Tissue organization in root and shoot apices using permanent slides.
- 2. Anomalous secondary growth in stemsof *Boerhavia* and *Dracaena*.
- 3. Study of anther and ovule using permanent slides/photographs.
- 4. Study of pollen germination and pollen viability.
- 5. Dissection and observation of Embryo sac haustoria in SantalumorArgemone.
- 6. Structure of endosperm (nuclear and cellular) using permanent slides / Photographs.
- 7. Dissection and observation of Endosperm haustoria in *Crotalaria* or *Coccinia*.
- 8. Developmental stages of dicot and monocot embryos using permanent slides / photographs.
- 9. Study of instruments used to measure microclimatic variables; soil thermometer, maximum and minimum thermometer, anemometer, rain gauze, and lux meter. (visit to the nearest/local meteorology station where the data is being collected regularly and record the field visit summary for the submission in the practical).
- 10. Study of morphological and anatomical adaptations of hydrophytes and xerophytes (02 each).
- 11. Quantitative analysis of herbaceous vegetation in the college campus forfrequency, density and abundance.

- 12. Identification of vegetation/various plants in college campus and comparison with Raunkiaer's frequency distribution law.
- 13. Find out the alpha-diversity of plants in the area
- 14. Mapping of biodiversity hotspots of the world and India.

Model paper for Practical Examination

Semester – III/ Botany Core Course – 3

Anatomy and Embryology of Angiosperms, Plant Ecology and Biodiversity

Max. Time: 3 Hrs. Max. Marks: 50

Take T.S. of the material 'A' (Anatomy), prepare a temporary slide and justify the identification with specific reasons.

- 2. Write the procedure for the experiment 'B' (Embryology) and demonstrate the same. 10 M
- 3. Take T.S. of the material 'C', prepare a temporary slide and justify the identification with specific reasons.

 10 M
- 4. Identify the following with specific reasons. $4 \times 3 = 12 \text{ M}$
 - D. Anatomy/Embryology
 - E. Ecology instrument
 - F. Mapping of Biodiversity hot spot
 - G. Endemic/endangered plant/animal
- 5. Record + Viva-voce 5 + 3 = 8 M

Suggested co-curricular activities for Botany CoreCourse-3 in Semester-III:

A. Measurable:

a. Student seminars:

- 1. Anatomy in relation to taxonomy of Angiosperms.
- 2. Nodal anatomy
- 3. Floral anatomy
- 4. Embryology in relation to taxonomy of Angiosperms.
- 5. Apomictics and polyembryony.
- 6. Biogeochemical cycles- Carbon, Nitrogen and Phosphorous.
- 7. Deforestation and Afforestation.
- 8. Green house effect and ocean acidification.
- 9. The Montreal protocol and the Kyoto protocol.
- 10. Productivity of aquatic ecosystems.
- 11. Mangrove ecosystems in India.
- 12. Kollerulake Ramsar site.
- 13. Biodiversity hotspots of the world.
- 14. Origin of Crop plants Vavilov centers
- 15. Agrobiodiversity
- 16. International organizations working on conservation of Biodiversity
- 17. Nagoya protocol ABS system.
- 18. Endemic and endangered plants in Andhra Pradesh.

b. Student Study Projects:

- 1. Stomata structure in plants from college campus/ their native place.
- 2. Report on xylem elements in plants using maceration technique.
- 3. Collection of information on famous herbaria in the world and preparation of a report.
 - 4. Microscopic observations on pollen morphology from plants in college Campus/ their native locality.
 - 5. Study report on germination and viability of pollen in different plants.
 - 6. Observation of anthesis time in different plants and their pollinators.
- 7.A report on autecology and synecology of some plants in college campus or their native place.
 - 8. Collection of photos of endemic/endangered plant and animal species to Makean album.

- 9. Biodiversity of the college or their own residential/ native area.
- 10. Collection of seeds/vegetative organs of rare plant species from their localities and to raise/grow in college garden
- **c. Assignments**: Written assignment at home / during '0' hour at college; preparation of charts with drawings, making models etc., on topics included insyllabus.

B. General:

- Visit to an arboretum/silviculture station/Forest research institute to see thelive timber yielding plants or to visit a local timber depot. to observe various woods.
- 2. Field visit to a nearby ecosystem to observe the abiotic-biotic relationships.
- 3. Visit to National park/Sanctuary/Biosphere reserve etc., to observe in-situconservation of plants and animals.
- 4. Visit to a Botanical garden or Zoo to learn about ex-situ conservation of rare plants or animals.
- 5. Group Discussion (GD)/ Quiz/ Just A Minute (JAM) on different modulesin syllabus of the course.